Search Results/Filters    

Filters

Year

Banks




Expert Group











Full-Text


Issue Info: 
  • Year: 

    2023
  • Volume: 

    11
  • Issue: 

    1
  • Pages: 

    53-67
Measures: 
  • Citations: 

    0
  • Views: 

    57
  • Downloads: 

    3
Abstract: 

Deep convolutional neural networks (CNNs) have attained remarkable success in numerous visual recognition tasks. There are two challenges when adopting CNNs in real-world applications: a) Existing CNNs are computationally expensive and memory intensive, impeding their use in edge computing; b) there is no standard methodology for designing the CNN architecture for the intended problem. Network pruning/compression has emerged as a research direction to address the first challenge, and it has proven to moderate CNN computational load successfully. For the second challenge, various evolutionary algorithms have been proposed thus far. The algorithm proposed in this paper can be viewed as a solution to both challenges. Instead of using constant predefined criteria to evaluate the filters of CNN layers, the proposed algorithm establishes evaluation criteria in online manner during network training based on the combination of each filter’s profit in its layer and the next layer. In addition, the novel method suggested that it inserts new filters into the CNN layers. The proposed algorithm is not simply a pruning strategy but determines the optimal number of filters. Training on multiple CNN architectures allows us to demonstrate the efficacy of our approach empirically. Compared to current pruning algorithms, our algorithm yields a network with a remarkable prune ratio and accuracy. Despite the relatively high computational cost of an epoch in the proposed algorithm in pruning, altogether it achieves the resultant network faster than other algorithms.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 57

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 3 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2023
  • Volume: 

    21
  • Issue: 

    75
  • Pages: 

    1-18
Measures: 
  • Citations: 

    0
  • Views: 

    74
  • Downloads: 

    24
Abstract: 

Speaker recognition is a process of recognizing persons based on their voice which is widely used in many applications. Although many researches have been performed in this domain, there are some challenges that have not been addressed yet. In this research, Neutrosophic (NS) theory and convolutional neural networks (CNN) are used to improve the accuracy of speaker recognition systems. To do this, at first, the spectrogram of the signal is created from the speech signal and then transferred to the NS domain. In the next step, the alpha correction operator is applied repeatedly until reaching constant entropy in subsequent iterations. Finally, a convolutional neural networks architecture is proposed to classify spectrograms in the NS domain. Two datasets TIMIT and Aurora2 are used to evaluate the effectiveness of the proposed method. The precision of the proposed method on two datasets TIMIT and Aurora2 are 93.79% and 95.24%, respectively, demonstrating that the proposed model outperforms competitive models.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 74

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 24 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Journal: 

JOURNAL OF BIG DATA

Issue Info: 
  • Year: 

    2022
  • Volume: 

    9
  • Issue: 

    1
  • Pages: 

    1-18
Measures: 
  • Citations: 

    1
  • Views: 

    45
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 45

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2018
  • Volume: 

    15
  • Issue: 

    3 (37)
  • Pages: 

    13-29
Measures: 
  • Citations: 

    0
  • Views: 

    800
  • Downloads: 

    0
Abstract: 

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov model (HMM) leads to considerable performance achievement in speech recognition problem because deep networks model complex correlations between features. The main aim of this paper is to achieve a better acoustic modeling by changing the structure of deep Convolutional Neural Network (CNN) in order to adapt speaking variations. In this way, existing models and corresponding inference task have been improved and extended. Here, we propose adaptive windows convolutional neural network (AWCNN) to analyze joint temporal-spectral features variation. AWCNN changes the structure of CNN and estimates the probabilities of HMM states. We propose adaptive windows convolutional neural network in order to make the model more robust against the speech signal variations for both single speaker and among various speakers. This model can better model speech signals. The AWCNN method applies to the speech spectrogram and models time-frequency varieties. This network handles speaker feature variations, speech signal varieties, and variations in phone duration. The obtained results and analysis on FARSDAT and TIMIT datasets show that, for phone recognition task, the proposed structure achieves 1. 2%, 1. 1% absolute error reduction with respect to CNN models respectively, which is a considerable improvement in this problem. Based on the results obtained by the conducted experiments, we conclude that the use of speaker information is very beneficial for recognition accuracy.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 800

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2021
  • Volume: 

    7
Measures: 
  • Views: 

    323
  • Downloads: 

    0
Abstract: 

These days deep learning methods play a pivotal role in complicated tasks, such as extracting useful features, segmentation, and semantic classification of images. These methods had significant effects on flower types classification during recent years. In this paper, we are trying to classify 102 flower species using a robust deep learning method. To this end, we used the transfer learning approach employing DenseNet121 architecture to categorize various species of oxford-102 flowers dataset. In this regard, we have tried to fine-tune our model to achieve higher accuracy respect to other methods. We performed preprocessing by normalizing and resizing of our images and then fed them to our fine-tuned pretrained model. We divided our dataset to three sets of train, validation, and test. We could achieve the accuracy of 98. 6% for 50 epochs which is better than other deep-learning based methods for the same dataset in the study.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 323

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0
Author(s): 

Hassanpour M. | Malek H.

Issue Info: 
  • Year: 

    2020
  • Volume: 

    33
  • Issue: 

    7
  • Pages: 

    1201-1207
Measures: 
  • Citations: 

    0
  • Views: 

    43
  • Downloads: 

    0
Abstract: 

The classification of various document image classes is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for training, and their very large number of weights. Previous successful attempts at learning document image features have been based on training very large CNNs. SqueezeNet is a CNN architecture that achieves accuracies comparable to other state of the art CNNs while containing up to 50 times less weights, but never before experimented on document image classification tasks. In this research we have taken a novel approach towards learning these  document image features by training on a very small CNN network such as SqueezeNet. We show that an ImageNet pretrained SqueezeNet achieves an accuracy of approximately 75 percent over 10 classes on the Tobacco-3482 dataset, which is comparable to other state of the art CNN. We then visualize saliency maps of the gradient of our trained SqueezeNet's output to input, which shows that the network is able to learn meaningful features that are useful for document classification. Previous works in this field have made no emphasis on visualizing the learned document features. The importance of features such as the existence of handwritten text, document titles, text alignment and tabular structures in the extracted saliency maps, proves that the network does not overfit to redundant representations of the rather small Tobacco-3482 dataset, which contains only 3482 document images over 10 classes.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 43

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2023
  • Volume: 

    10
  • Issue: 

    3
  • Pages: 

    93-105
Measures: 
  • Citations: 

    0
  • Views: 

    75
  • Downloads: 

    14
Abstract: 

Video surveillance cameras can be used as a powerful tool for automating the detection of various situations and helping to make appropriate decisions in order to increase the level of security and protection. One of the most important applications of video surveillance systems is the detection of abandoned objects such as abandoned luggage is to prevent dangerous bombings and other cases. In this regard, in this article, a two-stage model based on deep learning has been introduced to detect abandoned objects. The purpose of the first stage is to detect all the objects in the scene and the second stage is to classify the abandoned objects. In the first step, the Gaussian mixture model (GMM) is used to model the background and detect stationary objects. In the second step, a combination of convolutional neural network (CNN) and the AdaBoost algorithm is used to identify the abandoned objects among all the extracted images. Based on the results of the evaluations, the proposed model has a higher accuracy in detecting abandoned objects than the basic methods.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 75

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 14 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Issue Info: 
  • Year: 

    2022
  • Volume: 

    9
  • Issue: 

    -
  • Pages: 

    0-0
Measures: 
  • Citations: 

    1
  • Views: 

    19
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 19

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2023
  • Volume: 

    9
Measures: 
  • Views: 

    62
  • Downloads: 

    44
Abstract: 

Getting around CAPTCHAs is essential for stopping fraudulent online activity. The creation of efficient CAPTCHA-breaking algorithms in the context of Persian can help safeguard Farsi-speaking users from a variety of online dangers and enhance their overall online experience. This study offers a novel method for recognizing Persian CAPTCHAs, which was developed and tested on a large and distinctive dataset. Our approach to Farsi CAPTCHA recognition leverages deep learning models, specifically a combination of the TPS-Resnet-BiLSTM-ATTN model, which surpasses other approaches and breaks Farsi CAPTCHAs with the highest possible accuracy. We have achieved amazing results with promising implications for boosting the security and usability of many online services that depend on CAPTCHA authentication by delving deeply into the impact of attention modules on CAPTCHA recognition.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 62

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 44
Author(s): 

Zohrevand A. | Imani Z.

Issue Info: 
  • Year: 

    2021
  • Volume: 

    24
  • Issue: 

    8
  • Pages: 

    2028-2037
Measures: 
  • Citations: 

    0
  • Views: 

    42
  • Downloads: 

    0
Abstract: 

Due to the cursive-ness and high variability of Persian scripts, the segmentation of handwritten words into sub-words is still a challenging task. These issues could be addressed in a holistic approach by sidestepping segmentation at the character level. In this paper, an end-to-end holistic method based on deep convolutional neural network is proposed to recognize off-line Persian handwritten words. The proposed model uses only five convolutional layers and two fully connected layers for classifying word images effectively, which can lead to a substantial reduction in parameters. The effect of various pooling strategies is also investigated in this paper. The primary goal of this article is to ignore handcrafted feature extraction and attain a generalized and stable word recognition system. The presented model is assessed using two famous handwritten Persian word databases called Sadri and IRANSHAHR. The recognition accuracies were obtained at 98.6% and 94.6%, on Sadri and IRANSHAHR datasets respectively, and outperformed the state-of-the-art methods.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 42

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button